Filter:     Articles     Images


Supernova Blast Provides Clues to Age of Binary Star System
Dec. 4, 2013

Composite image of X-ray binary Circinus X-1

Composite image of X-ray binary Circinus X-1, the youngest of this class of astronomical objects found to date.
Image Credit: X-ray: NASA/CXC/UCLA/Z. Li et al; Radio: NRAO/VLA

Data from NASA’s Chandra X-ray Observatory has revealed faint remnants of a supernova explosion and helped researchers determine Circinus X-1 — an X-ray binary — is the youngest of this class of astronomical objects found to date.

As the name suggests, X-ray binaries are star systems made up of two parts: a compact stellar remnant — either a neutron star or a black hole; and a companion star — a normal star like our sun. As they orbit one another, the neutron star or black hole pulls in gas from the companion star. This heats the gas to millions of degrees, producing intense X-ray radiation and making these star systems some of the brightest X-ray sources in the sky.

Sebastian Heinz and his team at the University of Wisconsin-Madison (UW) discovered Circinus X-1 is less than 4,600 years old, making it the youngest X-ray binary system ever seen. This discovery, made in parallel with a radio telescope in Australia, provides scientists unique insight into the formation of neutron stars and supernovas, and the effect of the supernova’s explosion on a nearby companion star.

“X-ray binaries provide us with opportunities to study matter under extreme conditions that would be impossible to recreate in a laboratory,” Heinz said. “For the first time, we can study a newly minted neutron star in an X-ray binary system.”

Astronomers have detected hundreds of X-ray binaries throughout the Milky Way and other nearby galaxies. However, these older X-ray binaries, with ages typically measured in millions of years, only reveal information about what happens much later in the evolution of these systems.

“It’s critical that we see what these X-ray binaries are doing at all stages of their lives,” said co-author Paul Sell, also of UW. “Circinus X-1 is showing us what happens in a cosmic blink of an eye after one of these objects is born.”

To determine the age of Circinus X-1, the team of astronomers needed to examine the material around the orbiting pair of stars. However, the overwhelming brightness of the neutron star made it too difficult for researchers to observe that interstellar gas. The team recently caught a break, when they observed the neutron star in a very faint state — dim enough for scientists to detect the X-rays from the supernova shock wave that plowed through the surrounding interstellar gas.

“Since the supernova was triggered by the formation of the neutron star, our limit on the age of the supernova remnant also limits the age of the neutron star in Circinus X-1,” said co-author Robert Fender of the University of Oxford in the U.K.

The youth of Circinus X-1 helps explain its wild swings in brightness and the highly unusual orbit of its two stars, which had puzzled astronomers for years. The orbit is very eccentric — non-circular — and the period during which the two stars orbit each other is decreasing by several minutes every year. This is exactly what is expected for a young X-ray binary disrupted by a supernova explosion before the gravitational pull of the stars on each other has had time to circularize and stabilize the orbit.

Previous observations with other telescopes indicated the magnetic field of the neutron star in Circinus X-1 is weak. That, in addition to the star system’s young age, has led to two possible theories: either a neutron star can be born with a weak magnetic field, or it can quickly become de-magnetized as it pulls material from its companion star onto itself. Neither conclusion was expected from existing theories of neutron star evolution.

In our galaxy, the only other established X-ray binary within a supernova remnant is SS 433, which is between 10,000 and 100,000 years old, and behaves in many ways like an older version of Circinus X-1. Two other candidate X-ray binaries in nearby galaxies have ages similar to SS 433.

In addition to the Chandra data, radio observations from the Australia Telescope Compact Array were critical in these findings. A paper describing these results is available online and appears in the Dec. 4 issue of The Astrophysical Journal.

NASA’s Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA’s Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory in Cambridge, Mass., controls Chandra’s science and flight operations.

For more information about Chandra, visit: and .

Media Contacts:

J.D. Harrington
Headquarters, Washington

Megan Watzke
Chandra X-ray Center, Cambridge, Mass.

Janet Anderson
Marshall Space Flight Center, Huntsville, Ala.


Glimpsing the Infrastructure of a Gamma-ray Burst Jet
Dec. 4, 2013

A new study using observations from a novel instrument provides the best look to date at magnetic fields at the heart of gamma-ray bursts, the most energetic explosions in the universe. An international team of astronomers from Britain, Slovenia and Italy has glimpsed the infrastructure of a burst’s high-speed jet.

Gamma-ray bursts are the most luminous explosions in the cosmos. Most are thought to be triggered when the core of a massive star runs out of nuclear fuel, collapses under its own weight, and forms a black hole. The black hole then drives jets of particles that drill all the way through the collapsing star and erupt into space at nearly the speed of light.

Measurements of polarized light in the afterglow of GRB 120308A

Measurements of polarized light in the afterglow of GRB 120308A by the Liverpool Telescope and its RINGO2 instrument indicate the presence of a large-scale stable magnetic field linked with a young black hole, as shown in this illustration.
Image Credit: NASA’s Goddard Space Flight Center/S. Wiessinger

On March 8, 2012, NASA’s Swift satellite detected a 100-second pulse of gamma rays from a source in the constellation Ursa Minor. The spacecraft immediately forwarded the location of the gamma-ray burst, dubbed GRB 120308A, to observatories around the globe.

The world’s largest fully autonomous robotic optical telescope, the 2-meter Liverpool Telescope located at Roque de los Muchachos Observatory on La Palma in the Canary Islands, automatically responded to Swift’s notification.

“Just four minutes after it received Swift’s trigger, the telescope found the burst’s visible afterglow and began making thousands of measurements,” said lead researcher Carole Mundell, who heads the gamma-ray burst team at the Astrophysics Research Institute at Liverpool John Moores University in the U.K.

The telescope was fitted with an instrument named RINGO2, which Mundell’s team designed to detect any preferred direction, called polarization, in the vibration of light waves from burst afterglows.

Mundell’s team built RINGO2 in order to probe the magnetic fields long postulated to drive and focus the jets of gamma-ray bursts. The shoe-box-sized instrument pairs a spinning polarizing filter with a super-fast camera.

Energy across the spectrum, from radio waves to gamma rays, is emitted when a jet slams into its surroundings and begins to decelerate. This results in the formation of an outward-moving shock wave. At the same time, a reverse shock wave drives back into the jet debris, also producing bright emission.

“One way to picture these different shocks is by imagining a traffic jam,” Mundell said. “Cars approaching the jam abruptly slow down, which is similar to what happens in the forward shock. Cars behind them slow in turn, resulting in a wave of brake lights that moves backward along the highway, much like the reverse shock.”

Theoretical models of gamma-ray bursts predict that light from the reverse shock should show strong and stable polarized emissions if the jet possesses a structured magnetic field originating from the environment around the newly-formed black hole, thought to be the “central engine” driving the burst.

strong and stable polarized light in a gamma-ray burst’s jet

Theoretical models link the presence of strong and stable polarized light in a gamma-ray burst’s jet with a large-scale magnetic field (a blue spiral, in this illustration) originating from the newly-formed black hole.
Image Credit: NASA’s Goddard Space Flight Center/S. Wiessinger

Previous observations of optical afterglows detected polarizations of about 10 percent, but they provided no information about how this value changed with time. As a result, they could not be used to test competing jet models.

The Liverpool Telescope’s rapid targeting enabled the team to catch the explosion just four minutes after the initial outburst. Over the following 10 minutes, RINGO2 collected 5,600 photographs of the burst afterglow while the properties of the magnetic field were still encoded in its captured light.

The observations show that the initial afterglow light was polarized by 28 percent, the highest value ever recorded for a burst, and slowly declined to 16 percent, while the angle of the polarized light remained the same. This supports the presence of a large-scale organized magnetic field linked to the black hole, rather than a tangled magnetic field produced by instabilities within the jet itself.

A paper describing the team’s findings will appear in the Dec. 5 issue of the journal Nature.

“This is a remarkable discovery that could not have occurred without the lickety-split response times of the Swift satellite and the Liverpool Telescope,” said Neil Gehrels, the Swift principal investigator at NASA’s Goddard Space Flight Center in Greenbelt, Md.

Related Links

› Download additional graphics from NASA Goddard’s Scientific Visualization Studio
› Paper: “Highly polarized light from stable ordered magnetic fields in GRB 120308A”
› “NASA Sees ‘Watershed’ Cosmic Blast in Unique Detail” (Nov. 21, 2013)
› “NASA’s Fermi, Swift See ‘Shockingly Bright’ Burst” (05.03.13)
› “NASA’s Fermi Telescope Sees Most Extreme Gamma-ray Blast Yet” (02.19.09)
› “‘Naked-Eye’ Gamma-Ray Burst Was Aimed Squarely At Earth” (09.10.08)

Francis Reddy
NASA’s Goddard Space Flight Center, Greenbelt, Md.


Powerful Gamma-Ray Burst Detected Close To Milky Way
November 21, 2013

The jet from a Gamma-ray burst emerging at nearly lightspeed.  Credit: Credit: NASA/Swift/Cruz deWilde

The jet from a Gamma-ray burst emerging at nearly lightspeed.
Credit: Credit: NASA/Swift/Cruz deWilde

Overview Animation of Gamma-ray Burst

Lee Rannals for – Your Universe Online

Astronomers from around the world have compiled data from satellites and observatories to help explain the most powerful gamma-ray burst ever recorded, according to a study published in the journal Science.

Led by researchers from the Niels Bohr Institute and the University of Leicester, the international team said this gamma-ray burst occurred relatively close to the Milky Way. Gamma-ray bursts (GRBs) are violent bursts of gamma radiation typically associated with an exploding massive star.

When a star explodes as a supernova it releases the gamma-ray bursts, which are so bright that they can be seen from across the universe. Telescopes underneath Earth’s atmosphere are unable to detect this light, however; so astronomers rely on space-based observatories such as the Swift satellite to pick up on them.

Swift monitors the skies and typically discovers about 100 gamma-ray bursts each year, but the one they found this past April was particularly unusual.

Continue Learning:


Intense gamma-ray burst spells doom—for our models of gamma-ray bursts
Closest, most intense one we’ve observed yet.
by John Timmer – Nov 22 2013, 12:30pm EST

A massive star goes boom, leaving behind a black hole and sending off a burst of gamma rays. NSF

A massive star goes boom, leaving behind a black hole and sending off a burst of gamma rays.

Back in April, orbiting observatories started picking up the first indications of a gamma-ray burst. By the time observations wrapped up, the event (GRB 130427A) produced the largest outpouring of photons of any yet detected, and it set a record for the highest energy photon we’ve seen from these events. And because it was unusually close to Earth, GRB 130427A provided a wealth of information about these extreme events—and told us that we don’t really understand how they produce the gamma-rays that are their signature.

Yesterday’s issue of Science contains four papers that describe the event, partly because it was unusually well-documented. The enormous stars that produce gamma-ray bursts were much more common in the early Universe and, as a result, most of them occur out at the edge of the observable Universe. But GRB 130427A is an exception; the Universe was already about 10 billion years old when it happened, meaning the supernova that produced the gamma rays occurred less than four billion light years from Earth. As a result, ground-based instruments that were directed to the right area of the sky by the orbiting instruments were quickly able to identify the supernova involved (SN 2013cq).

Continue Learning:


NASA sees ‘watershed’ cosmic blast in unique detail
Posted: Nov 21, 2013 by Francis Reddy

In the most common type of gamma-ray burst, illustrated here, a dying massive star forms a black hole (left), which drives a particle jet into space. Credit: NASA's Goddard Space Flight Center

In the most common type of gamma-ray burst, illustrated here, a dying massive star forms a black hole (left), which drives a particle jet into space.
Credit: NASA’s Goddard Space Flight Center

( —On April 27, a blast of light from a dying star in a distant galaxy became the focus of astronomers around the world. The explosion, known as a gamma-ray burst and designated GRB 130427A, tops the charts as one of the brightest ever seen

A trio of NASA satellites, working in concert with ground-based robotic telescopes, captured never-before-seen details that challenge current theoretical understandings of how gamma-ray bursts work.

“We expect to see an event like this only once or twice a century, so we’re fortunate it happened when we had the appropriate collection of sensitive space telescopes with complementary capabilities available to see it,” said Paul Hertz, director of NASA’s Astrophysics Division in Washington.

Gamma-ray bursts are the most luminous explosions in the cosmos, thought to be triggered when the core of a massive star runs out of nuclear fuel, collapses under its own weight, and forms a black hole. The black hole then drives jets of particles that drill all the way through the collapsing star and erupt into space at nearly the speed of light.

Gamma-rays are the most energetic form of light. Hot matter surrounding a new black hole and internal shock waves produced by collisions within the jet are thought to emit gamma-rays with energies in the million-electron-volt (MeV) range, or roughly 500,000 times the energy of visible light. The most energetic emission, with billion-electron-volt (GeV) gamma rays, is thought to arise when the jet slams into its surroundings, forming an external shock wave.

The Gamma-ray Burst Monitor (GBM) aboard NASA’s Fermi Gamma-ray Space Telescope captured the initial wave of gamma rays from GRB 130427A shortly after 3:47 a.m. EDT April 27. In its first three seconds alone, the “monster burst” proved brighter than almost any burst previously observed.

Continue Learning:



Cosmic Journeys : Birth of a Black Hole

Published on Nov 29, 2012

It was one of the greatest mysteries in modern science: a series of brief but extremely bright flashes of ultra-high energy light coming from somewhere out in space. These gamma ray bursts were first spotted by spy satellites in the 1960s. It took three decades and a revolution in high-energy astronomy for scientists to figure out what they were.

Far out in space, in the center of a seething cosmic maelstrom. Extreme heat. High velocities. Atoms tear, and space literally buckles. Photons fly out across the universe, energized to the limits found in nature. Billions of years later, they enter the detectors of spacecraft stationed above our atmosphere. Our ability to record them is part of a new age of high-energy astronomy, and a new age of insights into nature at its most extreme. What can we learn by witnessing the violent birth of a black hole?

The outer limits of a black hole, call the event horizon, is subject to what Albert Einstein called frame dragging, in which space and time are pulled along on a path that leads into the black hole. As gas, dust, stars or planets fall into the hole, they form into a disk that spirals in with the flow of space time, reaching the speed of light just as it hits the event horizon. The spinning motion of this so-called “accretion disk” can channel some of the inflowing matter out into a pair of high-energy beams, or jets.

How a jet can form was shown in a supercomputer simulation of a short gamma ray burst. It was based on a 40-millisecond long burst recorded by Swift on May 9, 2005. It took five minutes for the afterglow to fade, but that was enough for astronomers to capture crucial details. It had come from a giant galaxy 2.6 billion light years away, filled with old stars.

Scientists suspected that this was a case of two dead stars falling into a catastrophic embrace. Orbiting each other, they moved ever closer, gradually gaining speed. At the end of the line, they began tearing each other apart, until they finally merged. NASA scientists simulated the final 35 thousandths of a second, when a black hole forms.

Chaos reigns. But the new structure becomes steadily more organized, and a magnetic field takes on the character of a jet. Within less than a second after the black hole is born, it launches a jet of particles to a speed approaching light.

A similar chain of events, in the death of a large star, is responsible for longer gamma ray bursts. Stars resist gravity by generating photons that push outward on their enormous mass. But the weight of a large star’s core increases from the accumulation of heavy elements produced in nuclear fusion. In time, its outer layers cannot resist the inward pull… and the star collapses. The crash produces a shock wave that races through the star and obliterates it.

In the largest of these dying stars, known as collapsars or hypernovae, a black hole forms in the collapse. Matter flowing in forms a disk. Charged particles create magnetic fields that twist off this disk, sending a portion out in high-speed jets.

Simulations show that the jet is powerful enough to plow its way through the star. In so doing, it may help trigger the explosion. The birth of a black hole does not simply light up the universe. It is a crucial event in the spread of heavy elements that seed the birth of new solar systems and planets.

But the black hole birth cries that we can now register with a fleet of high-energy telescopes are part of wider response to gravity’s convulsive power.

(Watch More Videos)


Exploding Stars

Uploaded on Jan 3, 2009

To some there is no vision more reassuring: the cycles of the sun and the moon, the heavens ceaselessly turning. The night sky is unchanging and eternal — Or so it seems. But modern astronomy has given us a much different vision: a universe that roils and vents its rage… In fierce radiation jets that erupt from newborn stars. In netherworlds where matter billions of times the mass of our sun collapses to a single point. In the most violent explosions since the Big Bang… The supernova.

(Watch More Videos)


Mysterious Black Holes

Uploaded on Jan 3, 2009

In the fold of our home galaxy, the Eagle Nebula is one of the richest of the great star nurseries. Intense stellar winds have sculpted a majestic castle of gas. Inside these giant columns, stars are being born. Yet for the dying stars that set this process in motion, the consequences are grim. Supernovae leave in their wake a range of bizarre objects. Among them, tiny ultra-dense objects called neutron stars, and their strange, other worldly cousins, black holes.

(Watch More Videos)


What’s Inside a Black Hole?

Uploaded on Jul 11, 2008

Take a ride on the Black Hole Flight Simulator, courtesy of Professor Andrew Hamilton. You can read about this work in this NY Times article……

(Watch More Videos)

3 thoughts on “Stars

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s