Big Think

Joel Primack: Dark Matter Reveals the Structure of the Universe

Published on Nov 20, 2013

We know that the dark matter has to be pretty cold – moving so slowly that its motion hardly matters – and that allows us to predict in great detail the large scale structure of the universe.

Transcript – Dark matter is the vast majority of the mass of the entire universe. It’s the mass that holds all galaxies together, and in fact, led to the formation of galaxies. And it also holds clusters together and it made the most important contribution to the organization of the structure of the universe.

We already know that the dark matter is cold. I invented this terminology back in 1983, calling the dark matter hot, warm or cold depending on how rapidly it’s moving in the early stages of the Big Bang. Hot if it’s moving at nearly the speed of light, cold if it’s moving so slowly that its motion hardly matters, and warm is an intermediate case. We know that the dark matter has to be pretty cold, but it could be a little bit warm. And that would make a great difference to what we call small scale structure, the amount of satellite galaxies and things like that. We don’t yet know the real nature of the dark matter beyond that it’s pretty cold.

Being pretty cold is enough to allow us to predict in great detail the large scale structure of the universe, the organization of the galaxies and to some extent the satellites of the galaxies. But the small scale structure of the universe really depends in more detail of the nature of the dark matter. Also, the dark matter can possibly interact with itself and annihilate and two dark matter particles come together and then make a lot of other stuff. And this could have played an extremely important role in the early universe, and it could still be producing effects that are sensitive detectors in space and on the ground can find experimentally.

We haven’t yet seen clear evidence for any of these things, although there are a number of experiments that are reporting tentative detections. So, it feels very much like we’re on the verge of major breakthroughs in trying to understand the nature of the dark matter. If we finally do figure out the nature of the dark matter, we will then have a single unified picture of the origin and evolution of the entire universe. One that scientists all over the world have contributed to and that can become the basis for a shared origin story that could possibly solidify the bonds of humankind. We’ve never had a single picture, thoroughly supported by scientific evidence, and we’re coming close to it now.

So I think we scientists are feeling very hopeful that we’re about to cross this threshold and have a complete understanding of the origin and the evolution of the universe. And of course, we’re also coming to a much better understanding of the evolution of life. So these last decades of the 20th century and the first decades of the 21st century are a real turning point, I think, in our understanding of how we got here.

Directed / Produced by Jonathan Fowler, Elizabeth Rodd, and Dillon Fitton

_____________________________________________________________________________________________________________

Michio Kaku: The Universe in a Nutshell

Published on Aug 15, 2012

The Universe in a Nutshell: The Physics of Everything
Michio Kaku, Henry Semat Professor of Theoretical Physics at CUNY

What if we could find one single equation that explains every force in the universe? Dr. Michio Kaku explores how physicists may shrink the science of the Big Bang into an equation as small as Einstein’s “e=mc^2.” Thanks to advances in string theory, physics may allow us to escape the heat death of the universe, explore the multiverse, and unlock the secrets of existence. While firing up our imaginations about the future, Kaku also presents a succinct history of physics and makes a compelling case for why physics is the key to pretty much everything.

The Floating University
Originally released September, 2011.

Directed / Produced by Jonathan Fowler, Kathleen Russell, and Elizabeth Rodd

_____________________________________________________________________________________________________________

String Theory Is The Only Game In Town

Uploaded on Jan 30, 2012

Dr. Kaku says String Theory is the only theory that has the potential to offer a Theory of Everything.

______________________________________________________________________________________________________________

Michio Kaku: What If Einstein Is Wrong?

Published on Jan 11, 2012

http://bigthink.com

We’ll have to recalibrate everything — the age of the universe, the age of stars, the distance to the stars, the basic structure of modern electronics, the GPS, nuclear weapons — all of that would have to be recalibrated and rethought …

_________________________________________________________________________________________________________

Erik Verlinde: Gravity Doesn’t Exist

Uploaded on Jun 10, 2011

http://bigthink.com

The theoretical physicist believes that gravity is an emergent phenomenon, not the elemental “force” that Newton and Einstein theorized it to be. He thinks it is the result of patterns of complex, microscopic phenomena.

_____________________________________________________________________________________________________________

Neil deGrasse Tyson: My Man, Sir Isaac Newton

Uploaded on Jun 3, 2011

http://bigthink.com

Watch the rest of Niel deGrasse Tyson’s interviewhttp://bigthink.com/neildegrassetyson. Neil deGrasse Tyson says Newton’s writings defy gravity by making his hair stand up.

Question: Who’s the greatest physicist in history?DeGrasse Tyson:    Isaac Newton.  I mean, just look… You read his writings.  Hair stands up… I don’t have hair there but if I did, it would stand up on the back of my neck.  You read his writings, the man was connected to the universe in ways that I never seen another human being connected.  It’s kind of spooky actually.  He discovers the laws of optics, figured out that white light is composed of colors.  That’s kind of freaky right there.  You take your colors of the rainbow, put them back together, you have white light again.  That freaked out the artist of the day.  How does that work?  Red, orange, yellow, green, blue, violet gives you white.  The laws of optics.  He discovers the laws of motion and the universal law of gravitation.  Then, a friend of his says, “Well, why do these orbits of the planets… Why are they in a shape of an ellipse, sort of flattened circle?  Why aren’t… some other shape?”  He said, you know, “I can’t… I don’t know.  I’ll get back to you.”  So he goes… goes home, comes back couple of months later, “Here’s why.  They’re actually conic sections, sections of a cone that you cut.”  And… And he said, “Well, how did find this out?  How did you determine this?”  “Well, I had to invent integral and differential calculus to determine this.”  Then, he turned 26.  Then, he turned 26.  We got people slogging through calculus in college just to learn what it is that Isaac Newtown invented on a dare, practically.  So that’s my man, Isaac Newton.

Question: Who’s the greatest physicist in history?DeGrasse Tyson:    Isaac Newton.  I mean, just look… You read his writings.  Hair stands up… I don’t have hair there but if I did, it would stand up on the back of my neck.  You read his writings, the man was connected to the universe in ways that I never seen another human being connected.  It’s kind of spooky actually.  He discovers the laws of optics, figured out that white light is composed of colors.  That’s kind of freaky right there.  You take your colors of the rainbow, put them back together, you have white light again.  That freaked out the artist of the day.  How does that work?  Red, orange, yellow, green, blue, violet gives you white.  The laws of optics.  He discovers the laws of motion and the universal law of gravitation.  Then, a friend of his says, “Well, why do these orbits of the planets… Why are they in a shape of an ellipse, sort of flattened circle?  Why aren’t… some other shape?”  He said, you know, “I can’t… I don’t know.  I’ll get back to you.”  So he goes… goes home, comes back couple of months later, “Here’s why.  They’re actually conic sections, sections of a cone that you cut.”  And… And he said, “Well, how did find this out?  How did you determine this?”  “Well, I had to invent integral and differential calculus to determine this.”  Then, he turned 26.  Then, he turned 26.  We got people slogging through calculus in college just to learn what it is that Isaac Newtown invented on a dare, practically.  So that’s my man, Isaac Newton.

_____________________________________________________________________________________________________________

Michio Kaku: Fusion Really Is 20 Years Away

Uploaded on May 31, 2011

http://bigthink.com

Scientists always say that fusion is 20 years away, but this time the physicist says it’s for real.

One thought on “Big Think

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s